Quantum technologies are cutting-edge systems that can process, transfer, or store information leveraging quantum mechanical effects, particularly a phenomenon known as quantum entanglement. Entanglement entails a correlation between two or more distant particles, whereby measuring the state of one also defines the state of the others.
The mystery of quantum phenomena inside materials—such as superconductivity, where electric current flows without energy loss—lies in when electrons move together and when they break apart. KAIST researchers have succeeded in directly observing the moments when electrons form and dissolve ordered patterns.
The ice in a domestic freezer is remarkably different from the single crystals that form in snow clouds, or even those formed on a frozen pond. As temperatures drop, ice crystals can grow in a variety of shapes: from stocky hexagonal prisms to flat plates, to Grecian columns.
A new unified theory connects two fundamental domains of modern quantum physics: It joins two opposite views of how a single exotic particle behaves in a many-body system, namely as a mobile or static impurity among a large number of fermions, a so-called Fermi sea.
A team from UNIGE shows that it is possible to determine the state of a quantum system from indirect measurements when it is coupled to its environment.
In 2023, a team of physicists from Sandia National Laboratories announced a major discovery: a way to steer LED light. If refined, it could mean someday replacing lasers with cheaper, smaller, more energy-efficient LEDs in countless technologies, from UPC scanners and holographic projectors to self-driving cars. The team assumed it would take years of meticulous experimentation to refine their technique.
Quantum mechanics is rich with paradoxes and contradictions. It describes a microscopic world in which particles exist in a superposition of states—being in multiple places and configurations all at once, defined mathematically by what physicists call a "wavefunction." But this runs counter to our everyday experience of objects that are either here or there, never both at the same time.
A hundred years ago, quantum mechanics was a radical theory that baffled even the brightest minds. Today, it's the backbone of technologies that shape our lives, from lasers and microchips to quantum computers and secure communications.
For decades, the ability to visualize the chemical composition of materials, whether for diagnosing a disease, assessing food quality, or analyzing pollution, depended on large, expensive laboratory instruments called spectrometers. These devices work by taking light, spreading it out into a rainbow using a prism or grating, and measuring the intensity of each color. The problem is that spreading light requires a long physical path, making the device inherently bulky.
Even very slight environmental noise, such as microscopic vibrations or magnetic field fluctuations a hundred times smaller than Earth's magnetic field, can be catastrophic for quantum computing experiments with trapped ions.
In a recent study, researchers from China have developed a chip-scale LiDAR system that mimics the human eye's foveation by dynamically concentrating high-resolution sensing on regions of interest (ROIs) while maintaining broad awareness across the full field of view.
Quantum technologies, systems that process, transfer or store information leveraging quantum mechanical effects, could tackle some real-world problems faster and more effectively than their classical counterparts. In recent years, some engineers have been focusing their efforts on the development of quantum communication systems, which could eventually enable the creation of a "quantum internet" (i.e., an equivalent of the internet in which information is shared via quantum physical effects).
All celestial bodies—planets, suns, even entire galaxies—produce magnetic fields, affecting such cosmic processes as the solar wind, high-energy particle transport, and galaxy formation. Small-scale magnetic fields are generally turbulent and chaotic, yet large-scale fields are organized, a phenomenon that plasma astrophysicists have tried explaining for decades, unsuccessfully.
A research group has achieved a new plasma confinement regime using small 3D magnetic perturbations that simultaneously suppress edge instabilities and enhance core plasma confinement in the Experimental Advanced Superconducting Tokamak (EAST). The research results are published in PRX Energy.
In a new study, an international group of researchers has found that chiral phonons can create orbital current without needing magnetic elements—in part because chiral phonons have their own magnetic moments. Additionally, this effect can be achieved in common crystal materials. The work has potential for the development of less expensive, energy-efficient orbitronic devices for use in a wide array of electronics.
---- End of list of PHYS ORG Physics Articles on this page 1 of 2 total pages ----