webnology.us

PHYS ORG Physics News Posts

Posts are copyright PHYS.ORG

Metal clumps in a quantum state: Physicists place thousands of sodium atoms in a 'Schrödinger's cat state'

Can a small lump of metal be in a quantum state that extends over distant locations? A research team at the University of Vienna answers this question with a resounding yes. In the journal Nature, physicists from the University of Vienna and the University of Duisburg-Essen show that even massive nanoparticles consisting of thousands of sodium atoms follow the rules of quantum mechanics. The experiment is currently one of the best tests of quantum mechanics on a macroscopic scale.

View Article

Unified framework sorts spacetime fluctuations for quantum-gravity experiments

A team of researchers led by the University of Warwick has developed the first unified framework for detecting "spacetime fluctuations"—tiny, random distortions in the fabric of spacetime that appear in many attempts to unite quantum physics and gravity.

View Article

Are your memories illusions? New study disentangles the Boltzmann brain paradox

In a recent paper, SFI Professor David Wolpert, SFI Fractal Faculty member Carlo Rovelli, and physicist Jordan Scharnhorst examine a longstanding, paradoxical thought experiment in statistical physics and cosmology known as the "Boltzmann brain" hypothesis—the possibility that our memories, perceptions, and observations could arise from random fluctuations in entropy rather than reflecting the universe's actual past. The work is published in the journal Entropy.

View Article

New insight into light-matter thermalization could advance neutral-atom quantum computing

Light and matter can remain at separate temperatures even while interacting with each other for long periods, according to new research that could help scale up an emerging quantum computing approach in which photons and atoms play a central role.

View Article

Optical technique reveals hidden magnetic states in antiferromagnets

Imagine computer hardware that is blazing fast and stores more data in less space. That's the promise of antiferromagnets, magnetic materials that do not interfere with each other and can switch states at high speed, opening the door to advanced computing and quantum applications.

View Article

Innovative optical atomic clock could combine single-ion accuracy with multi-ion stability

For many years, cesium atomic clocks have been reliably keeping time around the world. But the future belongs to even more accurate clocks: optical atomic clocks. In a few years' time, they could change the definition of the base unit second in the International System of Units (SI). It is still completely open, which of the various optical clocks will serve as the basis for this.

View Article

Using magnetic frustration to probe new quantum possibilities

Research in the lab of UC Santa Barbara materials professor Stephen Wilson is focused on understanding the fundamental physics behind unusual states of matter and developing materials that can host the kinds of properties needed for quantum functionalities.

View Article

Magnetic 'sweet spots' enable optimal operation of hole spin qubits

Quantum computers, systems that process information leveraging quantum mechanical effects, could reliably tackle various computational problems that cannot be solved by classical computers. These systems process information in the form of qubits, units of information that can exist in two states at once (0 and 1).

View Article

3D-printed surfaces help atoms play ball to improve quantum sensors

Scientists have created 3D printed surfaces featuring intricate textures that can be used to bounce unwanted gas particles away from quantum sensors, allowing useful particles like atoms to be delivered more efficiently, which could help improve measurement accuracy.

View Article

Entangled atomic clouds enable more precise quantum measurements

Researchers at the University of Basel and the Laboratoire Kastler Brossel have demonstrated how quantum mechanical entanglement can be used to measure several physical parameters simultaneously with greater precision.

View Article

Experiment clarifies cosmic origin of rare proton-rich isotope selenium-74

Researchers have reported new experimental results addressing the origin of rare proton-rich isotopes heavier than iron, called p-nuclei. Led by Artemis Tsantiri, then-graduate student at the Facility for Rare Isotope Beams (FRIB) and current postdoctoral fellow at the University of Regina in Canada, the study presents the first rare isotope beam measurement of proton capture on arsenic-73 to produce selenium-74, providing new constraints on how the lightest p-nucleus is formed and destroyed in the cosmos.

View Article

ATLAS confirms collective nature of quark soup's radial expansion

Scientists analyzing data from heavy ion collisions at the Large Hadron Collider (LHC)—the world's most powerful particle collider, located at CERN, the European Organization for Nuclear Research—have new evidence that a pattern of "flow" observed in particles streaming from these collisions reflects those particles' collective behavior. The measurements reveal how the distribution of particles is driven by pressure gradients generated by the extreme conditions in these collisions, which mimic what the universe was like just after the Big Bang.

View Article

A new optical centrifuge is helping physicists probe the mysteries of superfluids

Physicists have used a new optical centrifuge to control the rotation of molecules suspended in liquid helium nano-droplets, bringing them a step closer to demystifying the behavior of exotic, frictionless superfluids.

View Article

New code connects microscopic insights to the macroscopic world

In inertial confinement fusion, a capsule of fuel begins at temperatures near zero and pressures close to vacuum. When lasers compress that fuel to trigger fusion, the material heats up to millions of degrees and reaches pressures similar to the core of the sun. That process happens within a miniscule amount of space and time.

View Article

Particle permutation task can be tackled by quantum but not classical computers, study finds

Quantum computers, systems that process information leveraging quantum mechanical effects, are expected to outperform classical computers on some complex tasks. Over the past few decades, many physicists and quantum engineers have tried to demonstrate the advantages of quantum systems over their classical counterparts on specific types of computations.

View Article

---- End of list of PHYS ORG Physics Articles on this page 2 of 2 total pages ----


GO SCIENCE!!
GO STEM STUDENTS!!

BACK
HOME