Can a small lump of metal be in a quantum state that extends over distant locations? A research team at the University of Vienna answers this question with a resounding yes. In the journal Nature, physicists from the University of Vienna and the University of Duisburg-Essen show that even massive nanoparticles consisting of thousands of sodium atoms follow the rules of quantum mechanics. The experiment is currently one of the best tests of quantum mechanics on a macroscopic scale.
A team of researchers led by the University of Warwick has developed the first unified framework for detecting "spacetime fluctuations"—tiny, random distortions in the fabric of spacetime that appear in many attempts to unite quantum physics and gravity.
In a recent paper, SFI Professor David Wolpert, SFI Fractal Faculty member Carlo Rovelli, and physicist Jordan Scharnhorst examine a longstanding, paradoxical thought experiment in statistical physics and cosmology known as the "Boltzmann brain" hypothesis—the possibility that our memories, perceptions, and observations could arise from random fluctuations in entropy rather than reflecting the universe's actual past. The work is published in the journal Entropy.
Light and matter can remain at separate temperatures even while interacting with each other for long periods, according to new research that could help scale up an emerging quantum computing approach in which photons and atoms play a central role.
Imagine computer hardware that is blazing fast and stores more data in less space. That's the promise of antiferromagnets, magnetic materials that do not interfere with each other and can switch states at high speed, opening the door to advanced computing and quantum applications.
For many years, cesium atomic clocks have been reliably keeping time around the world. But the future belongs to even more accurate clocks: optical atomic clocks. In a few years' time, they could change the definition of the base unit second in the International System of Units (SI). It is still completely open, which of the various optical clocks will serve as the basis for this.
Research in the lab of UC Santa Barbara materials professor Stephen Wilson is focused on understanding the fundamental physics behind unusual states of matter and developing materials that can host the kinds of properties needed for quantum functionalities.
Quantum computers, systems that process information leveraging quantum mechanical effects, could reliably tackle various computational problems that cannot be solved by classical computers. These systems process information in the form of qubits, units of information that can exist in two states at once (0 and 1).
Scientists have created 3D printed surfaces featuring intricate textures that can be used to bounce unwanted gas particles away from quantum sensors, allowing useful particles like atoms to be delivered more efficiently, which could help improve measurement accuracy.
Researchers at the University of Basel and the Laboratoire Kastler Brossel have demonstrated how quantum mechanical entanglement can be used to measure several physical parameters simultaneously with greater precision.
Researchers have reported new experimental results addressing the origin of rare proton-rich isotopes heavier than iron, called p-nuclei. Led by Artemis Tsantiri, then-graduate student at the Facility for Rare Isotope Beams (FRIB) and current postdoctoral fellow at the University of Regina in Canada, the study presents the first rare isotope beam measurement of proton capture on arsenic-73 to produce selenium-74, providing new constraints on how the lightest p-nucleus is formed and destroyed in the cosmos.
Scientists analyzing data from heavy ion collisions at the Large Hadron Collider (LHC)—the world's most powerful particle collider, located at CERN, the European Organization for Nuclear Research—have new evidence that a pattern of "flow" observed in particles streaming from these collisions reflects those particles' collective behavior. The measurements reveal how the distribution of particles is driven by pressure gradients generated by the extreme conditions in these collisions, which mimic what the universe was like just after the Big Bang.
Physicists have used a new optical centrifuge to control the rotation of molecules suspended in liquid helium nano-droplets, bringing them a step closer to demystifying the behavior of exotic, frictionless superfluids.
In inertial confinement fusion, a capsule of fuel begins at temperatures near zero and pressures close to vacuum. When lasers compress that fuel to trigger fusion, the material heats up to millions of degrees and reaches pressures similar to the core of the sun. That process happens within a miniscule amount of space and time.
Quantum computers, systems that process information leveraging quantum mechanical effects, are expected to outperform classical computers on some complex tasks. Over the past few decades, many physicists and quantum engineers have tried to demonstrate the advantages of quantum systems over their classical counterparts on specific types of computations.
---- End of list of PHYS ORG Physics Articles on this page 2 of 2 total pages ----